¡Todos los productos son NUEVOS y con 1 AÑOS de garantía!

Bateríasadaptador.es baterías Pago Seguro y Sencillo,Transmisión de Datos con Cifrado SSL.Nuestro objetivo consiste en la satisfacción de nuestros clientes.

Ingeniería neuromórfica: qué es, para qué sirve y cómo puede salvarnos la vida el chip de Intel que es capaz de oler

La ingeniería neuromórfica no es una disciplina reciente. Es relativamente poco conocida más allá de los ámbitos académico y de investigación, pero, en realidad, existe desde hace más de tres décadas. Su invención se atribuye a Carver Mead, un ingeniero eléctrico estadounidense formado en el prestigioso Instituto de Tecnología de California (Caltech) que a finales de los años 60 empezó a coquetear con la idea de diseñar circuitos integrados y algoritmos capaces de imitar el comportamiento del sistema nervioso de los animales.

Nuestro cerebro, que es, sin duda, el órgano más complejo de nuestro cuerpo, procesa la información de una manera extraordinariamente eficiente. Mead tuvo la habilidad de intuir hace más de medio siglo que algún día los ordenadores podrían inspirarse en él para desarrollar capacidades que los algoritmos que utilizamos en la informática clásica difícilmente podrían igualar. Su idea comenzó a tomar forma en los laboratorios dos décadas después de aquella primera intuición, a finales de los años 80, y durante la última década y media varios grupos de investigación y empresas han puesto en marcha proyectos que han aupado a la ingeniería neuromórfica como una disciplina con un potencial abrumador. Quizá, incluso, revolucionario.

Ingeniería neuromórfica: qué es y en qué se inspira
La naturaleza es una fuente de inspiración inagotable. La computación neuromórfica, como también se la conoce, no es en absoluto la primera tecnología que se inspira en la manera en que la naturaleza ha encontrado la solución a un reto. La forma de algunos trenes de alta velocidad está inspirada en una cualidad del martín pescador, un ave que gracias a la aerodinámica de su pico puede sumergirse en pleno vuelo sin apenas salpicar y sin provocar distorsiones en el agua. Los trenes más veloces han adoptado un «morro» puntiagudo similar al pico del martín pescador porque de esta forma no producen un estampido sónico al salir de los túneles.

Carver Mead concibió una arquitectura híbrida que combinase componentes electrónicos para emular no solo cómo funciona una neurona, sino también una gran cantidad de células nerviosas

Son tantas las innovaciones que hemos desarrollado inspirándonos en la naturaleza que ha surgido una disciplina científica, la biomímesis o biomimética, que, precisamente, toma como modelo la forma en que la naturaleza ha resuelto los retos con los que se ha encontrado durante miles de años. De la misma manera en que la aerodinámica de los trenes «bala» se inspira en la forma del pico del martín pescador, la computación neuromórfica se inspira en el comportamiento del sistema nervioso animal en general, y del cerebro en particular.

Una característica que puede ayudarnos a intuir su ambición es que su complejidad es tan alta que durante los últimos años se ha consolidado como una materia interdisciplinar que se nutre de la física, la microelectrónica, la biología, las matemáticas y la informática para seguir desarrollándose. El punto de partida inicial de Carver Mead fue aproximarse a los transistores como dispositivos de naturaleza analógica, y no como conmutadores digitales. Gracias a esta estrategia se dio cuenta de que el comportamiento de los transistores se parece a la manera en que las neuronas se comunican entre ellas transmitiendo impulsos eléctricos mediante un mecanismo conocido como sinapsis neuronal.

De alguna forma imaginó que debía de ser posible diseñar una arquitectura híbrida que combinase componentes electrónicos analógicos y digitales para emular no solo cómo funciona una neurona, sino también cómo se comporta un sistema complejo constituido por una gran cantidad de células nerviosas. En definitiva, intuyó que debía de ser posible construir un cerebro electrónico capaz de llevar a cabo un procesamiento complejo de la información similar al que realiza de forma natural y extremadamente eficiente un cerebro orgánico. Los científicos aún no han conseguido construir un sistema neuromórfico que iguale la capacidad del cerebro humano, pero ya tenemos, como veremos más adelante, sistemas con una capacidad equiparable a la del cerebro de un mamífero de pequeño tamaño con los que ya es posible llevar a cabo procesos muy complejos.

Estas son algunas de las aplicaciones de la computación neuromórfica
Los chips neuromórficos más avanzados que los científicos han conseguido desarrollar hasta ahora incorporan decenas de miles de neuronas artificiales, que son diminutos elementos electrónicos capaces de comunicarse entre sí de una forma muy similar a como lo hacen las neuronas de nuestro cerebro con el propósito de imitar su capacidad de procesamiento de la información. Esta estrategia provoca que la arquitectura de estos chips sea radicalmente diferente a la que utilizan los microprocesadores de nuestros ordenadores, teléfonos móviles y tabletas, y es precisamente esta diferencia la que nos permite enfrentarnos a problemas complejos de una forma muy distinta a como lo hacemos cuando utilizamos ordenadores y algoritmos clásicos.

El auténtico potencial de los sistemas neuromórficos consiste en su capacidad de resolver algunos problemas con mucha más rapidez y de una forma mucho más eficiente desde un punto de vista energético que un ordenador convencional. Incluso que un superordenador. Esto es posible, precisamente, debido a su habilidad a la hora de imitar la manera en que nuestro cerebro se enfrenta a los problemas. Una de las características más relevantes de los sistemas neuromórficos es su paralelismo intrínseco, que no es otra cosa que la capacidad de descomponer un problema en otros más pequeños que se pueden procesar de forma simultánea utilizando las distintas unidades funcionales de los sistemas neuromórficos.

Los sistemas neuromórficos pueden resolver algunos problemas con más rapidez y de una forma más eficiente que un superordenador convencional
Todo esto sobre el papel suena muy bien, pero para intuir el potencial real de la ingeniería neuromórfica es necesario que conozcamos en qué medida un sistema neuromórfico consigue aventajar a un ordenador convencional cuando ambos se enfrentan a la resolución de un mismo problema. Los sistemas neuromórficos actuales se utilizan principalmente para investigación, y si observamos lo mucho que han avanzado durante la última década y media parece razonable intuir que a medio plazo continuarán desarrollándose notablemente, lo que posiblemente los llevará más allá del ámbito académico y de los laboratorios de investigación. En cualquier caso, las cifras que manejan los sistemas neuromórficos actuales son bastante impresionantes. Y es que son capaces de resolver algunos problemas hasta 1.000 veces más rápido que un microprocesador clásico. Y, además, con una eficiencia energética hasta 10.000 veces mayor.

Estas cifras son muy impactantes, pero es importante que tengamos en cuenta que la computación neuromórfica no es la solución idónea para cualquier problema. Los investigadores la están utilizando para encontrar la solución a cargas de trabajo complejas y altamente paralelizables que conllevan un esfuerzo de cálculo y un gasto energético enormes cuando utilizamos un ordenador convencional. En estas circunstancias los sistemas neuromórficos pueden ser mucho más rápidos y eficientes incluso que los superordenadores con arquitectura clásica que tenemos hoy en día, pero no los reemplazarán porque, como acabamos de ver, no son idóneos para resolver cualquier problema. Ambas arquitecturas seguirán coexistiendo en el futuro.